3 research outputs found

    Direct foam writing in microgravity

    Get PDF
    Herein we report 2D printing in microgravity of aqueous-based foams containing metal oxide nanoparticles. Such hierarchical foams have potential space applications, for example for in situ habitat repair work, or for UV shielding. Foam line patterns of a TiO2-containing foam have been printed onto glass substrates via Direct Foam Writing (DFW) under microgravity conditions through a parabolic aircraft flight. Initial characterization of the foam properties (printed foam line width, bubble size, etc.) are presented. It has been found that gravity plays a significant role in the process of direct foam writing. The foam spread less over the substrate when deposited in microgravity as compared to Earth gravity. This had a direct impact on the cross-sectional area and surface roughness of the printed lines. Additionally, the contact angle of deionized water on a film exposed to microgravity was higher than that of a film not exposed to microgravity, due to the increased surface roughness of films exposed to microgravity

    Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices

    No full text
    The pursuit of intelligent optoelectronics could have profound implications on our future daily life. Simultaneous enhancement of the electrical performance, mechanical stretchability, and optical transparency of semiconducting polymers may significantly broaden the spectrum of realizable applications for these materials in future intelligent optoelectronics, i.e., wearable devices, electronic skin, stretchable displays, and a vast array of biomedical sensors. Here, semiconducting films with significantly improved mechanical elasticity and optical transparency, without affecting the film’s electronic conductivity even under 100% strain, were prepared by blending only a small amount (below 1 wt %) of either p-type or n-type commercial semiconductor polymers. We demonstrate that a self-organized versatile conjugated polymer film displaying an interpenetrating polymer network is formed in the semiconducting films and is crucial for the observed enhancement of elasticity, optical transparency, and charge-carrier mobility. On the basis of this versatile semiconducting film, we explored a new practical approach to directly integrate all the stretchable components for a large area transistor array through solution processing and a final single, mechanical peel-off step. We demonstrate robust transistor arrays exhibiting charge carrier mobilities above 1.0 cm<sup>2</sup>/V s with excellent durability, even under 100% strain. We believe our achievements will have great impact on stretchable optoelectronic devices for practical applications and represent promising directions for industry-scale production of stretchable displays and wearable electronic devices
    corecore